Technical Note

On the second-order slow drift force spectrum

J. A. P. Aranha
Department of Naval and Ocean Engineering, EPUSP, São Paulo, Brazil

&

A. C. Fernandes
Petrobrás, Rio de Janeiro, Brazil

(Received 20 July 1994; revised version received and accepted 25 May 1995)

In this paper, it is shown that the slow drift force spectrum of a floating body, obtained from the exact quadratic transfer function, is flat in the low-frequency range of interest and can be written in the form \(S_\tau(\mu) = S_\tau(0) + O(\mu^2) \), where \(S_\tau(0) \) can be computed from the known drift force coefficient in harmonic waves and the wave energy spectrum. It is also shown here that a special and normally used form of Newman’s approximation for the exact quadratic transfer function has an error of the form \([1 + O(\mu^2)]\) at low frequencies. Copyright © 1996 Elsevier Science Ltd.

1 INTRODUCTION

Low-frequency wave excitation on a floating body can be described by the so-called quadratic transfer function \(T(\Omega_1; \Omega_2) \), namely the force that appears at the ‘difference frequency’ \(\Delta \Omega = \Omega_2 - \Omega_1 \), in the second-order interaction between two harmonic waves with unit amplitude and frequencies \(\Omega_1 \) and \(\Omega_2 \), respectively.

The numerical computation of \(T(\Omega_1; \Omega_2) \) is difficult, since one needs to evaluate not only the quadratic interaction of the linear potential, but also to compute the second-order potential at the difference frequency \(\Delta \Omega \). Observing that practical interest is focused on small values of \(\Delta \Omega \), Newman\(^1\) proposed the approximation

\[T(\Omega_1, \Omega_2) \approx T(\Omega_1 + \alpha \Delta \Omega, \Omega_1 + \alpha \Delta \Omega) \equiv D(\Omega_1 + \alpha \Delta \Omega) \]

with \(0 \leq \alpha \leq 1 \) and \(D(\ldots) \) being the drift force coefficient in harmonic waves.

If \(T(\Omega_1; \Omega_2) \) is known, one can compute the low-frequency force spectrum \(S_\tau(\Delta \Omega) \) and so the pertinent parameters of the response. In particular, if the low-frequency damping is small in the horizontal \(x \)-motion, its RMS value is given by the expression

\[\sigma_x = \sqrt[4]{\frac{\pi}{4 \zeta} \frac{S_\tau(\Omega_n) \Omega_n}{R^2}} \] \hspace{1cm} (1a)

where \(\Omega_n \) is the small natural frequency, \(\zeta \) is the percentage of the critical damping and \(R \) the restoring coefficient. In the context of this paper, the important point in the above expression is to make clear that the function \(S_\tau(\ldots) \) needs to be computed only for small values of its argument.

The purpose of this paper is to show that \(dS_\tau/d\Omega \) is zero at \(\Omega = 0 \) and so \(S_\tau(\Omega) \) is ‘flat’ in the region of interest. If \(\Omega_0 \) is the typical wave frequency, for example the sea spectrum peak frequency, one can introduce the variables:

\[\omega = \Omega / \Omega_0 \]
\[\mu_n = \Omega_n / \Omega_0 \]
\[\mu = \Delta \Omega / \Omega_0 \] \hspace{1cm} (1b)